

Himeradine A, a Novel C₂₇N₃-Type Alkaloid from *Lycopodium chinense*

Hiroshi Morita, Yusuke Hirasawa, and Jun'ichi Kobayashi*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

jkobay@pharm.hokudai.ac.jp

Received March 6, 2003

Abstract: A novel C₂₇N₃-type *Lycopodium* alkaloid consisting of a fastigiatine-type skeleton (C₁₆N₂) and a quinolizidine moiety (C₁₁N), himeradine A (**1**), has been isolated from the club moss *Lycopodium chinense*, and the structure and relative stereochemistry were elucidated on the basis of spectroscopic data.

Lycopodium alkaloids¹ with unique heterocyclic frameworks of C₁₆N, C₁₆N₂, and C₂₇N₃ types have attracted great interest from biogenetic^{1,2} and biological³ points of view. These unique skeletons have also been challenging targets for total synthesis.⁴ Recently we have isolated serratezomines A, B, and C⁵ with seco-serratinine-type, serratinine-type, and lycodoline-type skeletons, respectively, from the club moss *Lycopodium serratum* var. *serratum*, complanadine A⁶ with a lycodine-dimeric skeleton and lyconadin A⁷ consisting of a fused pentacyclic ring system from *L. complanatum*, and senepodine A⁸ and lyconesidines A-C⁹ from *L. chinense*. Further investigation of the extracts of *L. chinense* resulted in the isolation of himeradine A (**1**), a novel C₂₇N₃-type alkaloid consisting of a fastigiatine-type skeleton (C₁₆N₂) and a quinolizidine moiety (C₁₁N). In this paper we describe the isolation and structure elucidation of **1**.

* To whom correspondence should be addressed. J.K.: Phone: (011)-706-4985. Fax: (011)706-4989.

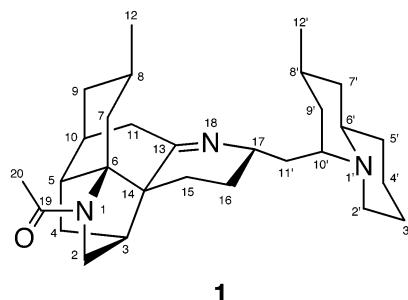
(1) For reviews of the *Lycopodium* alkaloids, see: (a) Ayer, W. A.; Trifonov, L. S. In *The Alkaloids*; Cordell, G. A.; Rossi, A., Ed.; Academic Press: New York, 1994; Vol. 45, p 233. (b) Ayer, W. A. *Nat. Prod. Rep.* **1991**, *8*, 455. (c) D. B. MacLean. In *The Alkaloids*; Rossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, p 241. (d) D. B. MacLean. In *The Alkaloids*; Manske, R. H. F., Ed.; Academic Press: New York, 1973; Vol. 14, p 348. (e) D. B. MacLean. In *The Alkaloids*; Manske, R. H. F., Ed.; Academic Press: New York, 1968; Vol. 10, p 305.

(2) (a) Hemscheidt, T.; Spenser, I. D. *J. Am. Chem. Soc.* **1996**, *118*, 1799–1800. (b) Hemscheidt, T.; Spenser, I. D. *J. Am. Chem. Soc.* **1993**, *115*, 3020–3021.

(3) Liu, J. S.; Zhu, Y. L.; Yu, C. M.; Zhou, Y. Z.; Han, Y. Y.; Wu, F. W.; Qi, B. F. *Can. J. Chem.* **1986**, *64*, 837–839.

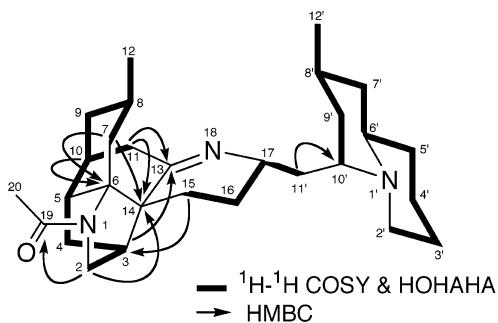
(4) (a) Sha, C.-K.; Lee, F.-K.; Chang, C.-J. *J. Am. Chem. Soc.* **1999**, *121*, 9875–9876. (b) Williams, J. P.; St. Laurent, D. R.; Friedrich, D.; Pinard, E.; Roden, B. A.; Paquette, L. A. *J. Am. Chem. Soc.* **1994**, *116*, 4689–4696. (c) Hirst, G. C.; Johnson, T. O.; Overman, L. E. *J. Am. Chem. Soc.* **1993**, *115*, 2992–2993, and references therein.

(5) Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J. *J. Org. Chem.* **2000**, *65*, 6241–6245.


(6) Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. *Tetrahedron Lett.* **2000**, *41*, 9069–9073.

(7) Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. *J. Org. Chem.* **2001**, *66*, 5901–5904.

(8) Morita, H.; Hirasawa, Y.; Yoshida, N.; Kobayashi, J. *Tetrahedron Lett.* **2001**, *42*, 4199–4201.


(9) Hirasawa, Y.; Morita, H.; Kobayashi, J. *Tetrahedron* **2002**, *58*, 5483–5488.

Isolation of Himeradine A (1). The club moss *L. chinense* was extracted with MeOH, and the extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, which were adjusted at pH 10 with sat. Na₂CO₃, were extracted with CHCl₃. CHCl₃-soluble materials were subjected to an amino silica gel column (hexane/EtOAc, 1:0 → 0:1), in which a fraction eluted with hexane/EtOAc (3:2) was purified by a silica gel column (CHCl₃/MeOH/EtOAc, 10:1:0.5) followed by C₁₈ HPLC (26% CH₃CN/0.1% TFA) to afford himeradine A (**1**, 2.0 mg, 0.001% yield) as TFA salts together with known related alkaloids, lucidine B¹⁰ (**2**, 0.001%), lyconesidines A⁹ (0.002%), B⁹ (0.005%), and C⁹ (0.003%), lycodoline¹¹ (0.001%), and senepodine A⁸ (0.003%).

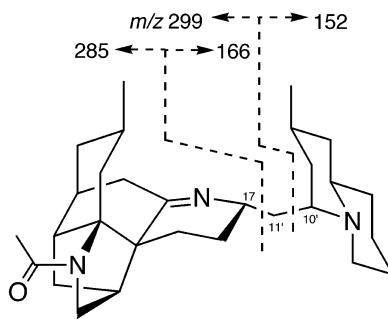


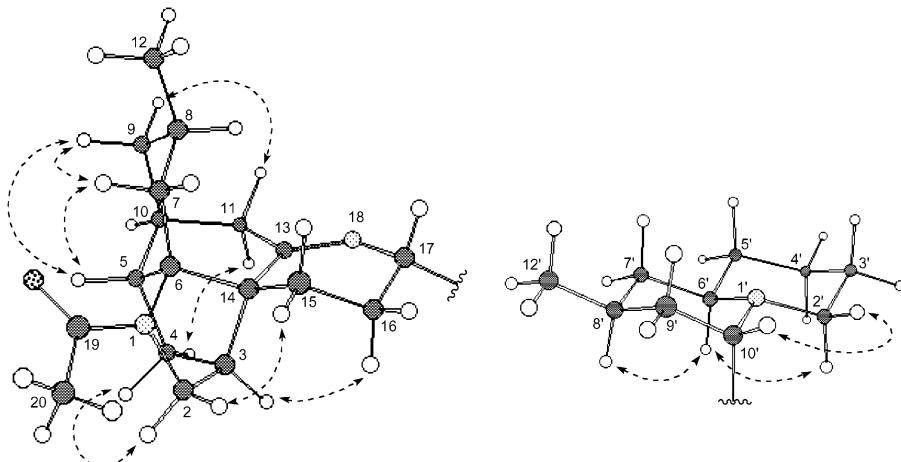
TABLE 1. ^1H and ^{13}C NMR Data of Himeradine A (**1**) in CD_3OD at 300 K

	δ_{H}	δ_{C}	HMBC (^1H)		δ_{H}	δ_{C}	HMBC (^1H)
1				17	4.09 (1H, m)	56.6	11a'
2a	3.34 (1H, m)	57.5	4a	18			
2b	3.80 (1H, m)			19		174.3	2a ^a , 20
3	2.70 (1H, brs)	45.4	15a	20	2.02 (3H, s)	24.4	
4a	1.73 (1H, m)	31.6	2	1'			
4b	1.97 (1H, m)			2a'	3.19 (1H, m)	52.9	
5	2.57 (1H, brs)	43.0	3, 7a, 9b, 11a ^a	2b'	3.33 (1H, m)		
6		76.1	7, 10	3a'	1.82 (1H, m)	24.6	4b', 5b'
7a	1.78 (1H, m)	35.0	9b, 12	3b'	1.93 (1H, m)		
7b	3.01 (1H, brt, 12.9)			4a'	1.54 (1H, m)	22.9	
8	1.26 (1H, m)	27.7	7b, 9a, 10, 12	4b'	1.82 (1H, m)		
9a	1.30 (1H, m)	40.7	7a, 11a ^a , 12	5a'	1.55 (1H, m)	32.5	7b'
9b	1.65 (1H, m)			5b'	1.93 (1H, m)		
10	2.35 (1H, brs)	35.5	4a, 9a, 11a ^a	6'	3.24 (1H, m)	58.4	5a', 7a'
11a	2.35 (1H, m) ^a	39.0 ^a		7a'	1.19 (1H, brq, 13.2)	40.5	9b', 12'
11b	2.79 (1H, m) ^a			7b'	1.90 (1H, m)		
12	0.96 (3H, d, 4.6)	22.8		8'	1.92 (1H, m)	24.2	7a', 12'
13		196.7	3 ^a , 11a ^a	9a'	1.65 (1H, m)	37.0	7b', 12'
14		57.1	2a, 7b, 11a ^a	9b'	1.95 (1H, m)		
15a	1.80 (1H, m)	20.6	16a	10'	3.77 (1H, m)	60.0	11a'
15b	1.96 (1H, m)			11a'	2.10 (1H, m)	31.1	9a'
16a	1.75 (1H, m)	26.0	15a	11b'	2.49 (1H, brd, 11.8)		
16b	2.29 (1H, m)			12'	0.98 (3H, d, 5.9)	21.5	

^a In pyridine- d_5 .**FIGURE 1.** Selected 2D NMR correlations for himeradine A (**1**).

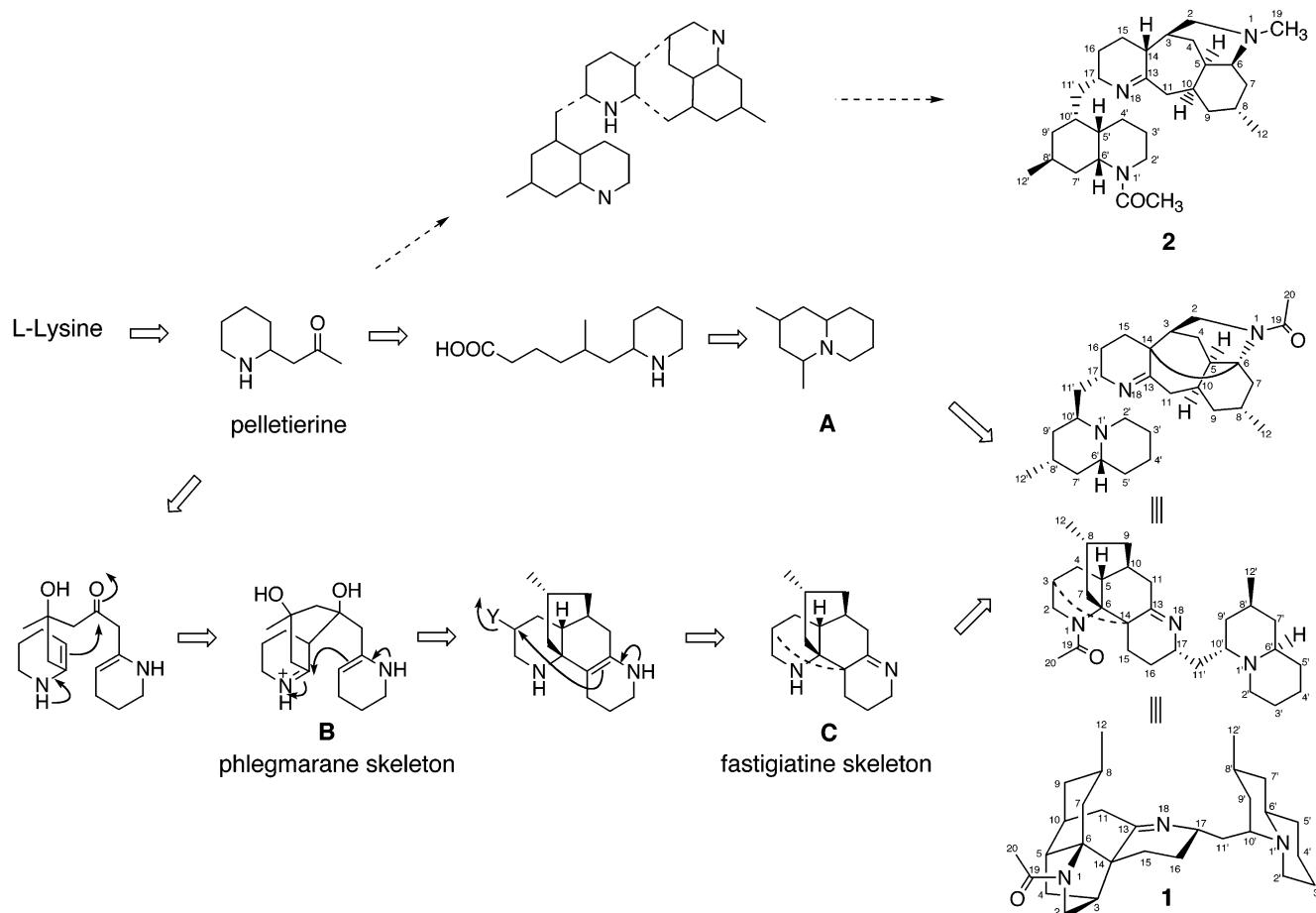
elucidated by HMBC cross-peaks for H-2a (δ_{H} 3.34) to C-14 (δ_{C} 57.1) and H-15a (δ_{H} 1.80) to C-3 (δ_{C} 45.4). HMBC correlations for H-10 (δ_{H} 2.35) and H₂-7 (δ_{H} 1.78 and 3.01) to C-6 (δ_{C} 76.1), and H-7b (δ_{H} 3.01) to C-14 revealed connectivities among C-5, C-7, and C-14 through C-6. The connectivity between C-11 and C-14 through an iminium carbon (C-13) was implied by long-range correlations for H-11a (δ_{H} 2.35) to C-13 (δ_{C} 196.7) and C-14, and H-3 (δ_{H} 2.70) to C-13. The HMBC cross-peak for H-2a to C-19 (δ_{C} 174.3) indicated that an acetyl group was attached to N-1. Further evidence supporting the proposed structure of **1** was provided by tandem mass spectrometry through examination of the collision-induced dissociation (CID) mass spectrum of the ($\text{M} + \text{H}$)⁺ ion. The positive ion FABMS/MS spectrum of **1** showed product ion peaks generated by fissions at the bonds between C-10' and C-11', and between C-11' and C-17 (Figure 2). Thus, the gross structure of himeradine A was elucidated to be **1** possessing a fused-pentacyclic fastigiatine-type ring system¹³ consisting of a tetrahydropyridine ring (N-18, C-13 to C-17), a bicyclo[3.3.1]nonane ring (C-5 to C-11, C-13, and C-14) with a methyl group at C-8, and a 2-azabicyclo-

FIGURE 2. Fragmentation patterns observed in positive ion FABMS/MS spectrum of himeradine A (**1**) (precursor ion m/z 452).


[2.2.1]heptane ring (N-1, C-2 to C-6, and C-14) with an acetyl group at N-1, which was further connected through C-11' to a quinolizidine ring (N-1' and C-2' to C-10') with a methyl group at C-8'.

Stereochemistry of Himeradine A (1). The relative stereochemistry of **1** was elucidated by NOESY correlations and $^3J_{\text{H}-\text{H}}$ coupling as depicted in the computer-generated 3D drawing (Figure 3).^{14,15} Conformations of the quinolizidine ring (N-1', C-2' to C-10') and the bicyclo[3.3.1]nonane ring (C-5 to C-11, C-13, and C-14), in which all the six-membered rings took chair forms, were deduced from NOESY correlations as shown in Figure 3, except for the stereochemistry at C-17 and C-10'. Large 3J coupling constant (12.9 Hz) between H-8 and H-7b indicated the configuration of the methyl group at C-8 as shown in Figure 3. NOESY correlations for H-17/H-10', H-11'a/H-8' and H-6', and H-11'b/H-2' were observed for free base of **1** (Figure 4), indicating that H-17 and H-10' were both β configurations. The large vicinal

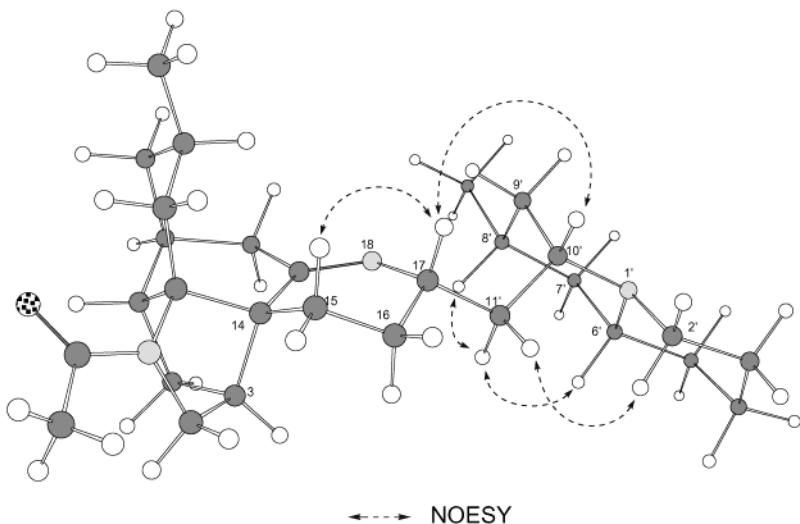
(14) Conformational search and molecular mechanics calculations were conducted by Macromodel program: Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. *J. Comput. Chem.* **1990**, *11*, 440–467.


(15) Halgren, T. *J. Am. Chem. Soc.* **1990**, *112*, 4710–4723.

(13) Gerard, R. V.; Maclean, D. B.; Fagianni, R.; Lock, C. J. *Can. J. Chem.* **1986**, *64*, 943–949.

FIGURE 3. Selected NOESY correlations (dotted arrows) and relative stereochemistry for himeradine A (**1**).

SCHEME 1



coupling constant (11.8 Hz) for H-11'b/H-17 and H-11'b/H-10' indicated that the two heterocyclic ring systems were almost fixed through C-11'. The conformational space for **1** searched by Monte Carlo simulation^{14,15} followed by minimization was consistent with the NOESY data and proton vicinal coupling constants. Thus, the relative stereochemistry of **1** was assigned as shown in Figure 4.

Plausible Biogenesis of Himeradine A (1). A plausible biogenetic pathway for himeradine A (**1**) is

proposed as shown in Scheme 1. Himeradine A (**1**) might be generated from a quinolizidine unit (**A**) and fastigiaticine skeleton (**C**), through phlegmarine skeleton (**B**) derived from L-lysine via pelletierine. The fastigiaticine skeleton (**C**) has been found only in the structure of fastigiaticine isolated from *L. fastigiatum*.¹³ Ayer's proposal¹⁶ for lucidine B (**2**) is also showed in Scheme 1, in

(16) Ayer, W. A.; Browne, L. M.; Nakahara, Y.; Tori, M. *Can. J. Chem.* **1979**, *57*, 1105–1107.

FIGURE 4. Stable conformer analyzed by Monte Carlo simulation followed by minimization and selected NOESY correlations for himeradine A (**1**).

which **2** is generated from two (enantiomeric) $C_{11}N$ units and a piperidine ring. In the present study, isolation of himeradine A (**1**) and lucidine B (**2**) from the same plant suggests that **2** might be also derived from $C_{16}N_2$ and $C_{11}N$ units such as **1**.

Bioactivity of Himeradine A (1). Himeradine A (**1**) exhibited cytotoxicity against murine lymphoma L1210 cells (IC_{50} , 10 μ g/mL) in vitro.

Acknowledgment. The authors thank Mrs. S. Oka and Miss M. Kiuchi, Center for Instrumental Analysis, Hokkaido University, for measurements of FABMS and

FABMS/MS, and Mr. N. Yoshida, Health Sciences University of Hokkaido, for useful advice on collection of the plant. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: Experimental procedures, 1D and 2D NMR spectra of **1**. This material is available free of charge via the Internet at <http://pubs.acs.org>.

JO034294T